On the Eleventh Day of APOLLO, My True Love Gave to Me – An Intriguing Story – Putting it All Together: A Day in the Life of My iPhone using APOLLO

I did a blog article, especially about the knowledgeC.db about a day in the life of my iPhone and it went over really well. I’ve decided to do a similar story using all the data that I’ve parsed from my iPhone using APOLLO, quite a bit more data to handle. For my device, I had 1.6 million rows!

Grab a holiday cocktail or a mug of eggnog and sit back and read the (quite boring) tale of my iPhone on September 16, 2018. This is the query I used for this day to filter it down from ~8800 rows.

On this particular day I was out celebrating my good friend Brian Moran’s Birthday at his house in Maryland. Around Midnight I decided it was time to leave and connected my phone to my car using CarPlay. The Device Status here shows the plugged in and CarPlay connections.

Next, I put in directions to “Home” in Apple Maps. I haven’t left yet, I’m still sitting in his driveway. You can see the SPEED is 0.0 in the Location output. Once I start to leave, you’d see that get populated.

During the drive I’m listening to Apple Music, in the Application Activity entries you can open these in the cell browser (depends on your SQL browser) to get more information than is seen in the screenshot row – some entries are very lengthy. Its late at night, good time for some dance music! 

I barely leave his house for five minutes before I receive a text from him in the Messages application (💕you Brian! 😂). Again, clicking the row for more information can be helpful. You can see how often I chat with a contact, over what application, and various related timestamps.

I message him back using Siri through CarPlay. The App Usage shows and which is Siri dictation for the Messages application. Just after that you can partially see a Send Message Intent in Application Activity. The next Application Activity/Device Status is CarPlay switching back to my music.

Apple Watch data is sometimes activated during a drive – here you can see me getting my steps in while I’m clearly driving. 🤷🏻‍♀️

While my iPhone is connected to CarPlay, it is also charging. Note the BATTERY LEVEL increasing in the next two screenshots.

I get close to home, so I turn off my Maps navigation. The Application Activity can be used to determine my navigation “to” and “from” locations. Redacted below.

A few minutes later I’m home and parked, I disconnected my phone from my car.

I unlock my phone and start checking my Messages. You can also see some population of Significant Locations here as well.

I have an Orangetheory [] class in the morning (later this morning, really), I better set an alarm. Also check to make sure I know what time the class is.

I plug the phone in before going to sleep.

Early in the morning, I want to know what time it is so I tap the screen to check. Still plenty of time to sleep!

I’m awake and (somewhat) active - I unplug the phone.

Of course, I need to check Twitter.

…and some other apps…

…and more apps, while drinking my coffee. 

Time to walk to the gym and start a workout. Once I select workout on my Apple Watch a couple of Health Workout Locations get populated with the coordinates of my gym. (Feel free to join me!)

In the middle of my workout I feel like I’m dying. 😵

A bit later I check WhatsApp, good to see my heart rate go down a bit too!

The afternoon is filled with research on my laptop at home. You’ll see plenty of location data of me going absolutely nowhere (other steps recorded around my condo) – however if you check my knowledgeC.db on my laptop things would be a bit more interesting!

I’m playing with the LiberiOS Jailbreak.

Looks like I logged in somewhere else that asked me for my two-factor code. (I don’t even remember.)

Check in my Fantasy Football team, not doing so awesome this year. 😬

Getting to Sunday evening, I start determining what I have to do in the next couple days. What exercise classes did I sign up for, what do I have to do on the 18th?

Finally, I set an alarm to make sure I get up on time for my workout.

On the Ninth Day of APOLLO, My True Love Gave to Me – A Beautiful Portrait – Analysis of the iOS Interface

The interface of the device can produce some useful artifacts. Starting with screen orientation. Perhaps you want to know if the user was watching a video for a period of time. In conjunction with other artifacts that I’ve already details like app usage the knowledge_device_orientation module will show if the screen was in landscape or portrait mode.

The knowledge_device_is_backlit module will let you know if the display was backlit or not, this is different than if the device was locked or not – perhaps the user was just checking their messages without unlocking the device.

Moving to the Powerlog, we can use the powerlog_device_screen module to see what “screen” the device was on. I’ve researched this one a bit and on my iPhone7 on iOS 11. These are the “screens” I was able to determine.

  • Homescreen(s) = 2 

  • Widgets = 19

  • Control Center = 5

  • Lock Screen = 9

  • Pin Unlock Screen = 15

  • Blank Screen = 0

  • App Switcher = 4 

  • Spotlight Search = 18 

  • Lock Screen Camera = 11   

  • Lock Screen Widgets = 17

Perhaps the how light or dark the environment is can help you in an investigation. The Powerlog stores the screen brightness. The lower the brightness, theoretically the darker the environment is where the device is, especially if the auto adjust feature is on. The powerlog_display_brightness module can output this data.

The next two modules powerlog_springboard_aggregate_bulletins and powerlog_springboard_aggregate_notifications] are some modules that I’d like to research more. I believe these are the notifications that are presented to the user for each application. However, I don’t know yet what the differences between a bulletin and a notification yet.

On the Eighth Day of APOLLO, My True Love Gave to Me – A Glorious Lightshow – Analysis of Device Connections

Today we’ll be analyzing the knowledgeC.db and CurrentPowerlog.PLSQL database for various connections. The first thing you may want to know in an investigation is – was the device plugged in or not? This can be gained from a few places.

The knowledgeC.db database tracks this information and can be parsed out by using the knowledge_device_pluggedin module. This will keep track of the plugged in and unplugged states of the device and for how long each of those events were as calculated out in the ‘Usage in Seconds’ column.

Similar data is captured in the CurrentPowerlog.PLSQL database. The powerlog_lightnining_connector_status module extracts the same events, however I have seen in my own data some slight oddities, like the plug in/unplug events every minute or so – almost like the cable was loose (it wasn’t). Take that observation for what it’s worth, at least we can corroborate with other data!

Another option is the powerlog_accessory_connection module. This one also appears to be more accurate but I’m not entirely sure what all “accessories” would be covered. My own data shows connections to power cables, this would include my CarPlay connection.

Speaking of CarPlay, we can extract that connection information using the knowledge_device_carplay_connected module. This output only has the initial connection, not the disconnect event.

Instead of physical connections, we may also be aware of wireless connections like Bluetooth. We can use the knowledge_audio_bluetooth_connected module to extract this information from the KnowledgeC.db database. This output contains the Bluetooth MAC address and name of the device. I’m obviously rocking out using my AirPods like a good Mac Fan Girl. 🤘🎶

Next on the Bluetooth list is the Apple Watch. The knowledge.db database also keeps track if the device is near the iPhone to which it is paired. The knowledge_device_watch_nearby module will show if I walked away from my iPhone for a certain period of time.

In the Powerlog, the paired Apple Watch information is stored. It not really in a log format but could be useful information. I have yet to determine the significance of the timestamp, it is not the initial pairing of the device. This can be extracted using the powerlog_paired_device_config module.

Finally let’s look at Wi-Fi connections. The Powerlog is keeping track of each SSID that my phone has connected to, but the name is a bit odd, I’m still researching why it is using this naming scheme, ideas are welcome. The “SSID” is alphanumeric and always same length. The powerlog_wifi_properties module will extract this data.


On the Seventh Day of APOLLO, My True Love Gave to Me – A Good Conversation – Analysis of Communications and Data Usage

Today is all about the CurrentPowerlog.PLSQL database. This database keeps track of many ways that data is transferred either by cellular, Wi-Fi, or Bluetooth methods. These modules can help determine where the data is going, which app is pulling down the most data, or simply keeping an eye on which apps are sending the most notifications.

Telephony Activity 

Starting with telephony artifact we can review the cellular registration using the powerlog_device_telephony_registration module. This outputs the cellular provider and the level of service provided. 

The powerlog_device_telephony_activity module will keep track of telephony activity on the device. In the screenshot below, each time the CALL STATUS shows ringing, I was receiving a phone call (that I ignored), but where it says ACTIVE, I made a phone call.

Another module that shows call usage, is the powerlog_incallservice module.. Like the example above this shows me ignoring three calls (callForegrounded, callBackgrounded) and a call made (callStart, callStop).

Network Usage

Mobile devices have network interfaces that track where the data is going. The powerlog_network_usage module keeps track of the incoming and outgoing bytes for these interfaces.

If you want a bit more detail on which apps or services are using your precious cellular data, take a look at the output of the powerlog_process_data_usage module. This can make it easy to see which app is burning through your mobile data. (Mine is always Twitter).

The powerlog_push_message_received module will show push notification activity for various network-based services. In the screenshot below are the notifications for Slack, Twitter, iMessage, etc.)

Bluetooth Activity

Many Apple technologies rely on Bluetooth technology to function. Determine what state Bluetooth was in is logged. Using the powerlog_bluetooth_device_state module, we can see which state it was in.

AirDrop is one of the technologies that uses Bluetooth (also Wi-Fi), the AirDrop state is recorded and can be extracted by the powerlog_airdrop module.

Continuity [] is a technology to move data back and forth between devices. AirDrop makes use of this technology. This activity can be extracted by the powerlog_ids_messages module.

On the Fifth Day of APOLLO, My True Love Gave to Me – A Stocking Full of Random Junk, Some of Which Might be Useful!

Today we go over one of the stranger databases on iOS, the Aggregate Dictionary database, or ADDataStore.sqlitedb. This database is only available with a physical file system dump in the /private/var/mobile/Library/AggregateDictionary/ directory. The database also has a different way of storing its data. Instead of a “this time this event happened” storage system like many of the other database I’ve gone over. This one aggregates data for the last seven days. It only records data on a per-day basis so the APOLLO modules will only store a day timestamp. 

This database is good to find random bits of useful stuff, not every case will need it but you might be surprise what it is tracking. The Distributed Keys and the Scalars are each keeping track of seemingly obscure items. In my opinion, the Scalars are more interesting. On my example database I have 5398 unique keys for Scalars and 795 keys for the Distributed table. I can’t even begin to show you everything this database tracks, its best just to take a look at one yourself to see what might help in your own investigations. I will focus here on a few of the more interesting Scalars entries.

I’ve previously written about this database with respect to Pincodes, Passcodes, and Touch ID.

APOLLO only has two modules for the Aggregate Dictionary. Since these are using only a per-day timestamp, I’ve made them easy to filter out or as a user choose to not use these modules. They can look a tad messy in the final output.

The first item I pulled out of the stocking is CarPlay data. The example below shows how many cars I’ve connected using CarPlay in I’ve connected this device to three different cars. I’m still testing the difference between*.CarPlayCar.* and *.tCarPlayPhone.* keys, however I could guess that Activations has something to do with how many times the app was selected while the ActiveTime is how long the app was in use.

The next item has to do with the Messages application. This app is collecting metrics on the different types of items sent and received over SMS or iMessage protocols.

The Settings applications ( keeps track of which setting got viewed. The example below shows I viewed the Bluetooth menu twice on the 10th, and the privacy settings once on the 14th. I encourage everyone to search for various bundle IDs of interest in this output – you never know what the apps are going to store!

The Clock app ( keeps track of how many alarms the device has set, if any are active, number repeating, and named alarms. Some apps are better at storing data like this than others.

Safari records the number of tabs open on a particular day

The Photos app ( keeps track of how many photos there are in the albums.

Curious how many times a device was plugged in during a day, try the key. We will revisit this action in an upcoming device state article.

When I say obscure, I mean obscure – it also keeps track of button presses…because why not!

Some settings are also stored in this database. You can perform a filter for a couple of keywords – enabled or disabled. I’ve provided a screenshot for both. For the “Enabled” keys, I chose to filter on the main interface, Springboard ( The value is a binary value that means on (1) or off (0). This is different for the “Disabled” keys.

If the keys have the term “disabled” in them, you have to think opposite. For example, all these Accessibility features are actually turned on or enabled. If the disabled setting is a 0, it means it is turned on (you can see many of the settings in the iOS screenshot, Shake to Undo and Vibration for example.)

Finally, in the toe of the stocking we can get some data usage information. I’ve filtered here by the Twitter application (com.atebits.Tweetie2). The screenshot shows how much data was transferred in kilobytes over Wi-Fi and/or WWAN – incoming or outgoing.